3.5.78 \(\int \coth ^4(e+f x) (a+b \sinh ^2(e+f x))^{3/2} \, dx\) [478]

Optimal. Leaf size=306 \[ -\frac {(a+b) \cosh ^2(e+f x) \coth (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f}+\frac {(3 a+5 b) \cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f}-\frac {\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}-\frac {8 (a+b) E\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(3 a+b) (a+3 b) F\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 a f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {8 (a+b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 f} \]

[Out]

-1/3*coth(f*x+e)^3*(a+b*sinh(f*x+e)^2)^(3/2)/f-(a+b)*cosh(f*x+e)^2*coth(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/f+1/3
*(3*a+5*b)*cosh(f*x+e)*sinh(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/f-8/3*(a+b)*(1/(1+sinh(f*x+e)^2))^(1/2)*(1+sinh(f
*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/2),(1-b/a)^(1/2))*sech(f*x+e)*(a+b*sinh(f*x+e)^2)^(1
/2)/f/(sech(f*x+e)^2*(a+b*sinh(f*x+e)^2)/a)^(1/2)+1/3*(3*a+b)*(a+3*b)*(1/(1+sinh(f*x+e)^2))^(1/2)*(1+sinh(f*x+
e)^2)^(1/2)*EllipticF(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/2),(1-b/a)^(1/2))*sech(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)
/a/f/(sech(f*x+e)^2*(a+b*sinh(f*x+e)^2)/a)^(1/2)+8/3*(a+b)*(a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)/f

________________________________________________________________________________________

Rubi [A]
time = 0.25, antiderivative size = 306, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3275, 484, 594, 542, 545, 429, 506, 422} \begin {gather*} \frac {(3 a+b) (a+3 b) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} F\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right )}{3 a f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {8 (a+b) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} E\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right )}{3 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {8 (a+b) \tanh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f}+\frac {(3 a+5 b) \sinh (e+f x) \cosh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f}-\frac {\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}-\frac {(a+b) \cosh ^2(e+f x) \coth (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Coth[e + f*x]^4*(a + b*Sinh[e + f*x]^2)^(3/2),x]

[Out]

-(((a + b)*Cosh[e + f*x]^2*Coth[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/f) + ((3*a + 5*b)*Cosh[e + f*x]*Sinh[e +
 f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*f) - (Coth[e + f*x]^3*(a + b*Sinh[e + f*x]^2)^(3/2))/(3*f) - (8*(a + b)*
EllipticE[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*f*Sqrt[(Sech[e + f*x]^
2*(a + b*Sinh[e + f*x]^2))/a]) + ((3*a + b)*(a + 3*b)*EllipticF[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*
Sqrt[a + b*Sinh[e + f*x]^2])/(3*a*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) + (8*(a + b)*Sqrt[a + b
*Sinh[e + f*x]^2]*Tanh[e + f*x])/(3*f)

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 484

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^p*((c + d*x^n)^q/(e*(m + 1))), x] - Dist[n/(e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*x^n)^(p -
1)*(c + d*x^n)^(q - 1)*Simp[b*c*p + a*d*q + b*d*(p + q)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b*
c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] && LtQ[m, -1] && GtQ[p, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x
]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 542

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
f*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*(n*(p + q + 1) + 1))), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 594

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*g*(m + 1))), x] - Dist[1/(a*g^n*(m + 1
)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f)*(m + 1) + e*n*(b*c*(p + 1) + a*d*q)
 + d*((b*e - a*f)*(m + 1) + b*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && IGtQ[n
, 0] && GtQ[q, 0] && LtQ[m, -1] &&  !(EqQ[q, 1] && SimplerQ[e + f*x^n, c + d*x^n])

Rule 3275

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff^(m + 1)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[x^m*((a + b*ff^2*
x^2)^p/(1 - ff^2*x^2)^((m + 1)/2)), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \coth ^4(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2} \, dx &=\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\left (1+x^2\right )^{3/2} \left (a+b x^2\right )^{3/2}}{x^4} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=-\frac {\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}+\frac {\left (2 \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {1+x^2} \sqrt {a+b x^2} \left (\frac {3 (a+b)}{2}+3 b x^2\right )}{x^2} \, dx,x,\sinh (e+f x)\right )}{3 f}\\ &=-\frac {(a+b) \cosh ^2(e+f x) \coth (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f}-\frac {\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}+\frac {\left (2 \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {1+x^2} \left (\frac {3}{2} \left (2 a^2+5 a b+b^2\right )+\frac {3}{2} b (3 a+5 b) x^2\right )}{\sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 f}\\ &=-\frac {(a+b) \cosh ^2(e+f x) \coth (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f}+\frac {(3 a+5 b) \cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f}-\frac {\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}+\frac {\left (2 \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\frac {3}{2} b (3 a+b) (a+3 b)+12 b^2 (a+b) x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{9 b f}\\ &=-\frac {(a+b) \cosh ^2(e+f x) \coth (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f}+\frac {(3 a+5 b) \cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f}-\frac {\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}+\frac {\left (8 b (a+b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 f}+\frac {\left ((3 a+b) (a+3 b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 f}\\ &=-\frac {(a+b) \cosh ^2(e+f x) \coth (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f}+\frac {(3 a+5 b) \cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f}-\frac {\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}+\frac {(3 a+b) (a+3 b) F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 a f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {8 (a+b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 f}-\frac {\left (8 (a+b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\left (1+x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{3 f}\\ &=-\frac {(a+b) \cosh ^2(e+f x) \coth (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f}+\frac {(3 a+5 b) \cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f}-\frac {\coth ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}-\frac {8 (a+b) E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(3 a+b) (a+3 b) F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 a f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {8 (a+b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 3.69, size = 229, normalized size = 0.75 \begin {gather*} \frac {-\frac {\left (-32 a^2-44 a b+58 b^2+\left (64 a^2+32 a b-79 b^2\right ) \cosh (2 (e+f x))+2 b (6 a+11 b) \cosh (4 (e+f x))-b^2 \cosh (6 (e+f x))\right ) \coth (e+f x) \text {csch}^2(e+f x)}{4 \sqrt {2}}-32 i a (a+b) \sqrt {\frac {2 a-b+b \cosh (2 (e+f x))}{a}} E\left (i (e+f x)\left |\frac {b}{a}\right .\right )+4 i \left (5 a^2-2 a b-3 b^2\right ) \sqrt {\frac {2 a-b+b \cosh (2 (e+f x))}{a}} F\left (i (e+f x)\left |\frac {b}{a}\right .\right )}{12 f \sqrt {2 a-b+b \cosh (2 (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Coth[e + f*x]^4*(a + b*Sinh[e + f*x]^2)^(3/2),x]

[Out]

(-1/4*((-32*a^2 - 44*a*b + 58*b^2 + (64*a^2 + 32*a*b - 79*b^2)*Cosh[2*(e + f*x)] + 2*b*(6*a + 11*b)*Cosh[4*(e
+ f*x)] - b^2*Cosh[6*(e + f*x)])*Coth[e + f*x]*Csch[e + f*x]^2)/Sqrt[2] - (32*I)*a*(a + b)*Sqrt[(2*a - b + b*C
osh[2*(e + f*x)])/a]*EllipticE[I*(e + f*x), b/a] + (4*I)*(5*a^2 - 2*a*b - 3*b^2)*Sqrt[(2*a - b + b*Cosh[2*(e +
 f*x)])/a]*EllipticF[I*(e + f*x), b/a])/(12*f*Sqrt[2*a - b + b*Cosh[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]
time = 1.52, size = 540, normalized size = 1.76

method result size
default \(\frac {\sqrt {-\frac {b}{a}}\, b^{2} \left (\sinh ^{8}\left (f x +e \right )\right )-3 \sqrt {-\frac {b}{a}}\, a b \left (\sinh ^{6}\left (f x +e \right )\right )-3 \sqrt {-\frac {b}{a}}\, b^{2} \left (\sinh ^{6}\left (f x +e \right )\right )+3 a^{2} \sqrt {\frac {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) \left (\sinh ^{3}\left (f x +e \right )\right )+2 b \sqrt {\frac {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) a \left (\sinh ^{3}\left (f x +e \right )\right )-5 \sqrt {\frac {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) b^{2} \left (\sinh ^{3}\left (f x +e \right )\right )+8 \sqrt {\frac {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) a b \left (\sinh ^{3}\left (f x +e \right )\right )+8 \sqrt {\frac {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) b^{2} \left (\sinh ^{3}\left (f x +e \right )\right )-4 \sqrt {-\frac {b}{a}}\, a^{2} \left (\sinh ^{4}\left (f x +e \right )\right )-8 \sqrt {-\frac {b}{a}}\, a b \left (\sinh ^{4}\left (f x +e \right )\right )-4 \sqrt {-\frac {b}{a}}\, b^{2} \left (\sinh ^{4}\left (f x +e \right )\right )-5 \sqrt {-\frac {b}{a}}\, a^{2} \left (\sinh ^{2}\left (f x +e \right )\right )-5 \sqrt {-\frac {b}{a}}\, a b \left (\sinh ^{2}\left (f x +e \right )\right )-\sqrt {-\frac {b}{a}}\, a^{2}}{3 \sqrt {-\frac {b}{a}}\, \sinh \left (f x +e \right )^{3} \cosh \left (f x +e \right ) \sqrt {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}\, f}\) \(540\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(f*x+e)^4*(a+b*sinh(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/3*((-1/a*b)^(1/2)*b^2*sinh(f*x+e)^8-3*(-1/a*b)^(1/2)*a*b*sinh(f*x+e)^6-3*(-1/a*b)^(1/2)*b^2*sinh(f*x+e)^6+3*
a^2*((a+b*sinh(f*x+e)^2)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*sinh
(f*x+e)^3+2*((a+b*sinh(f*x+e)^2)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/
2))*b*a*sinh(f*x+e)^3-5*((a+b*sinh(f*x+e)^2)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/
2),(a/b)^(1/2))*b^2*sinh(f*x+e)^3+8*((a+b*sinh(f*x+e)^2)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e)*
(-1/a*b)^(1/2),(a/b)^(1/2))*a*b*sinh(f*x+e)^3+8*((a+b*sinh(f*x+e)^2)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticE(
sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b^2*sinh(f*x+e)^3-4*(-1/a*b)^(1/2)*a^2*sinh(f*x+e)^4-8*(-1/a*b)^(1/2)*
a*b*sinh(f*x+e)^4-4*(-1/a*b)^(1/2)*b^2*sinh(f*x+e)^4-5*(-1/a*b)^(1/2)*a^2*sinh(f*x+e)^2-5*(-1/a*b)^(1/2)*a*b*s
inh(f*x+e)^2-(-1/a*b)^(1/2)*a^2)/(-1/a*b)^(1/2)/sinh(f*x+e)^3/cosh(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)^4*(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sinh(f*x + e)^2 + a)^(3/2)*coth(f*x + e)^4, x)

________________________________________________________________________________________

Fricas [F]
time = 0.15, size = 46, normalized size = 0.15 \begin {gather*} {\rm integral}\left ({\left (b \coth \left (f x + e\right )^{4} \sinh \left (f x + e\right )^{2} + a \coth \left (f x + e\right )^{4}\right )} \sqrt {b \sinh \left (f x + e\right )^{2} + a}, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)^4*(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral((b*coth(f*x + e)^4*sinh(f*x + e)^2 + a*coth(f*x + e)^4)*sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)**4*(a+b*sinh(f*x+e)**2)**(3/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 6189 deep

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)^4*(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Evaluation time: 0.95Unable to divide, perhaps due to rounding error%%%{1024,[8,16,8]%%%}+%%%{%%%{-4096,[1]
%%%},[8,16,

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\mathrm {coth}\left (e+f\,x\right )}^4\,{\left (b\,{\mathrm {sinh}\left (e+f\,x\right )}^2+a\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(e + f*x)^4*(a + b*sinh(e + f*x)^2)^(3/2),x)

[Out]

int(coth(e + f*x)^4*(a + b*sinh(e + f*x)^2)^(3/2), x)

________________________________________________________________________________________